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Fig. 1. Different operators trained using pOps. Our method learns operators that are applied directly in the image embedding space, resulting in a variety of
semantic operations that can then be realized as images using an image diffusion model.

Text-guided image generation enables the creation of visual content from
textual descriptions. However, certain visual concepts cannot be effectively
conveyed through language alone. This has sparked a renewed interest in
utilizing the CLIP image embedding space for more visually-oriented tasks
through methods such as IP-Adapter. Interestingly, the CLIP image embed-
ding space has been shown to be semantically meaningful, where linear
operations within this space yield semantically meaningful results. Yet, the
specific meaning of these operations can vary unpredictably across different
images. To harness this potential, we introduce pOps, a framework that trains
specific semantic operators directly on CLIP image embeddings. Each pOps
operator is built upon a pretrained Diffusion Prior model. While the Diffu-
sion Prior model was originally trained to map between text embeddings
and image embeddings, we demonstrate that it can be tuned to accommodate
new input conditions, resulting in a diffusion operator. Working directly
over image embeddings not only improves our ability to learn semantic op-
erations but also allows us to directly use a textual CLIP loss as an additional
supervision when needed. We show that pOps can be used to learn a variety
of photo-inspired operators with distinct semantic meanings, highlighting
the semantic diversity and potential of our proposed approach. Code and
models are available via our project page: https://popspaper.github.io/pOps/.

1 INTRODUCTION
Operators are often among the first concepts we learn in mathe-
matics. They offer an intuitive means to describe complex concepts
and equations, accompanying us from basic arithmetic operations
to advanced mathematics. In the field of visual content generation,
text has emerged as the de facto interface for describing and gener-
ating complex concepts. However, attaining precise control over the
generated content through language is challenging, often requiring
extensive prompt engineering. Drawing inspiration from the intu-
itiveness of operators and classical generation approaches such as

Constructive Solid Geometry [Foley 1996], we propose an operator-
based generation mechanism built on top of the CLIP [Radford et al.
2021] image embedding space.

Interestingly, as observed by Ramesh et al. [2022], the CLIP image
embedding space is already semantically meaningful, where linear
operations within this subspace yield semantically meaningful em-
bedding representations. As illustrated in Figure 2, these operations
correspond to manipulations of generated images, such as compo-
sitions or the merging of concepts. However, being a vector space,
users lack direct control over the exact operations performed over
embeddings residing within this space. Motivated by this observa-
tion, we propose pOps, a general framework for training specific
operators within the CLIP [Radford et al. 2021] image embedding
space, with each operator reflecting a unique semantic operation.
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Fig. 2. Averaging in latent space. Given two images we encode them
to the CLIP embedding space, average their representations, and pass the
result as a condition to an image diffusion model to generate an image.
As shown, averaging in latent space has semantic meaning even with no
training but the meaning can change unexpectedly and is not controllable.

https://popspaper.github.io/pOps/
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Importantly, all pOps operators share the same architecture, differ-
ing only in the training data and objective. As shall be demonstrated,
this unified framework allows one to compose different semantic
manipulations, providing much-needed control and flexibility over
the image embeddings used to guide the generation process.

We represent thesemanipulations using the Diffusion Priormodel,
introduced in DALL-E 2 [Ramesh et al. 2022]. We show that the
Diffusion Prior, originally trained to map text embeddings into
image embeddings, can be naturally extended and fine-tuned to
accommodate other conditions. In its original training scheme, the
Diffusion Prior was trained to denoise image embeddings based on
either text conditions or null inputs. Intuitively, the prior needed
to learn not only the properties of its input conditions but also the
characteristics of a broad target domain and the relation between
the two. Subsequently, when fine-tuning the model over a new
condition, the model can now leverage its prior understanding of
the image domain, thereby focusing on relearning the condition-
specific aspect of the mapping. In fact, we show that even when
fine-tuning a subset of the prior model layers, the model can still
operate over new input conditions. This observation also aligns
with existing literature on text-to-image diffusion models, where
introducing new controls such as image embeddings (IP-Adapter [Ye
et al. 2023]) or spatial controls (ControlNet [Zhang and Agrawala
2023]) can be achieved with a relatively short fine-tuning performed
over a pretrained model.
To illustrate the flexibility of pOps, we design several operators,

highlighting different potential semantic applications, including:

(1) The Union Operator. Given two image embeddings represent-
ing scenes with one or multiple objects, combine the objects
appearing in the scenes.

(2) The Texturing Operator. Given an image embedding of an
object and an image embedding of a texture exemplar, paint
the object with the provided texture.

(3) The Scene Operator. Given an image embedding of an ob-
ject and an image embedding representing a scene layout,
generate an image placing the object within a semantically
similar scene.

(4) The Instruct Operator. Given an image embedding of an ob-
ject and a single-word adjective, apply the adjective to the
image embedding, altering its characteristics accordingly.

(5) The Composition Operator. Given a set of object parts (e.g.,
articles of clothing), create a scene composing the objects
together (e.g., a complete outfit).

For each operator, we independently fine-tune the Diffusion Prior
model on the corresponding task to generate the desired image em-
bedding representation. Observe that some operators (e.g., texturing
and union) can be trained by defining a paired dataset of image em-
beddings. However, in some instances, defining a paired dataset is
impractical. As such, we show how one can train operators using
supervision realized by a textual CLIP loss, eliminating the need for
direct image supervision.

Finally, given a set of trained pOps operators, we can also compose
them together to form more complex semantic operations, creating
a new generation paradigm. Rather than providing all conditions
simultaneously and generating the output in a single shot, we can
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Fig. 3. pOps operators can be composed into generative trees, each node
specifying a different operator applied in the CLIP image embedding space.

carefully design each element in the CLIP embedding space and
compose them together into a generative tree. This allows users
to design a more granular generation process wherein objects are
first generated independently, manipulated individually, and finally
merged together into a single embedding. This final embedding
can then be “rendered” into a corresponding image using a pre-
trained image denoising network. This methodology aligns well
with traditional generation processes in computer graphics, such as
Constructive Solid Geometry [Foley 1996], which builds upon an
iterative, tree-like modeling approach, as illustrated in Figure 3.

2 RELATED WORK
Text-to-Image Generation. Recent advancements in large-scale

generative models [Po et al. 2023; Yin et al. 2024] have quickly
revolutionized content creation, particularly in the domain of visual
content generation. Notably, the progress in large-scale diffusion
models [Balaji et al. 2023; Ding et al. 2022; Nichol et al. 2021; Ramesh
et al. 2022; Rombach et al. 2022; Saharia et al. 2022; Shakhmatov
et al. 2022] has resulted in unprecedented quality, diversity, fidelity.
However, these models primarily rely on a free-form text prompt as
guidance, often requiring extensive prompt engineering to reach the
desired result [Liu and Chilton 2022; Marcus et al. 2022; Wang et al.
2022;Witteveen andAndrews 2022]. As a result, many have explored
new avenues for providing users with more precise control over the
generative process. This control is often realized through spatial
conditions [Avrahami et al. 2023; Bar-Tal et al. 2023; Dahary et al.
2024; Huang et al. 2023; Li et al. 2023b; Voynov et al. 2023; Zhang
and Agrawala 2023], including but not limited to segmentation
masks, bounding boxes, and depthmaps.While effective for defining
structure, these methods still lack the ability to control the style and
appearance of the generated image.
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Image-Conditioned Generation. To address the limitations of
text representations, some approaches aim to integrate image embed-
dings directly into pretrained denoising networks, most commonly
through cross-attention layers. For instance, T2I-Adapter [Mou et al.
2023] controls the global style of generated images by appending
image features extracted from a CLIP image encoder to the text em-
beddings. Similarly, Uni-ControlNet [Zhao et al. 2024] introduces an
adapter tasked with projecting CLIP image embeddings to the text
embedding space to achieve global control over the generated image.
Most relevant to our work, IP-Adapter [Ye et al. 2023] employs a de-
coupled cross-attention mechanism and an Image Prompt Adapter
to project image features into a pretrained text-to-image diffusion
model. While all of these methods allow conditioning on image em-
beddings, manipulating the embeddings themselves is challenging,
as they are fed into the network as-is. As a result, it remains difficult
to precisely control the actual effect of this condition.

Diffusion Prior Model. In Ramesh et al. [2022], the authors
introduce the Diffusion Prior model, tasked with mapping an in-
put text embedding to a corresponding image embedding in the
CLIP [Radford et al. 2021] embedding space. This image embedding
is then used to condition the generative model to generate the cor-
responding image. This mechanism allows them to not only use
existing image embeddings as a condition but also generate such
inputs using a separate generative process. Originally the authors
demonstrated that leveraging the Diffusion Prior leads to improved
image diversity while supporting image variations, interpolation,
and editing. Since then it has been shown that the prior mechanism
can also be adopted for a wide range of generative tasks, including
creative image generation [Richardson et al. 2023], text-to-video
generation [Esser et al. 2023; Singer et al. 2023], and 3D genera-
tion [Mohammad Khalid et al. 2022; Xu et al. 2023].

Operators and Composable Generation. In the context of few-
shot learning, Alfassy et al. [2019] demonstrate how to construct a
new feature vector such that its semantic content aligns with the
output of a set operation applied over a set of input vectors (e.g.,
intersection and union). This technique was shown to assist in few-
shot discriminative settings as a form of augmentation in the feature
space. In the generative domain, Composable-Diffusion [Liu et al.
2022] proposed using conjunction and negation operators to com-
pose text prompts and better control the generation process. Concept
Algebra has also been shown to be feasible in existing text-to-image
models by leveraging their learned representations [Brack et al. 2024;
Gandikota et al. 2023] or using a small exemplar dataset [Motamed
et al. 2023; Wang et al. 2024a].
While composite generation remains an under-researched task,

it has become common in the generative community to use tools
such as ComfyUI and WebUI to compose different methods into a
single generative scheme. In a sense, this can be viewed as a hierar-
chical generative process where each model serves as an operator
with a dedicated task (e.g. a try-on operator ([Choi et al. 2024; Xu
et al. 2024]), a texturing operator ([Cheng et al. 2024]), a stylization
operator [Wang et al. 2024b]). While this aligns with the inspiration
behind our work, these operators are typically applied as an after-
thought in the image domain, whereas we focus on manipulations
in the semantic image embedding domain.

Inspired Generation. Human creativity has been heavily studied
in the context of computer graphics, with many exploring whether
computers can be used to aid the creative design process [Elhoseiny
and Elfeki 2019; Esling and Devis 2020; Hertzmann 2018; Kantosalo
et al. 2014; Oppenlaender 2022; Wang et al. 2024c]. At the core of the
creative design process lies the ability to draw upon past knowledge
to inspire the creation of novel ideas [Bonnardel and Marmèche
2005; Wilkenfeld and Ward 2001]. Crucially, this process involves
associating past ideas to produce original concepts rather than sim-
ply mimicking prior work [Brown 2008; Rook and van Knippenberg
2011]. This is often achieved through the use of exemplars, drawing
inspiration from their shape, color, or function.

Recently, Vinker et al. [2023] utilized a VLM to decompose a visual
concept into different visual aspects, organized in a hierarchical tree
structure. In doing so, they demonstrate how novel concepts and cre-
ative ideas can be discovered from a single original concept. Building
on this, Lee et al. [2024] learn concept representation into disentan-
gled language-informed axes such as category, color, and material,
enabling novel concept compositions using the disentangled sub-
concepts. Finally, Ng et al. [2023] extract localized sub-concepts
(e.g., body parts) in an unsupervised manner that can be used to
create hybrid concepts by merging the learned sub-concepts.
In this work, we focus on composing different aspects of visual

concepts to inspire the generation of new visual content. This idea
also draws inspiration from Constructive Solid Geometry (CSG) [Fo-
ley 1996], which combines geometric primitives via a set of boolean
operators to form complex objects.

3 PRELIMINARIES
Diffusion Prior. Text-to-image diffusion models are typically

trained using a conditioning vector 𝑐 , which is derived from a pre-
trained CLIP [Radford et al. 2021] text encoder based on a user-
provided text prompt 𝑝 . Ramesh et al. [2022] propose a two-stage
approach to the text-to-image generative process. Firstly, they train
a Diffusion Prior model to map a given text embedding to a cor-
responding image embedding. Subsequently, the predicted image
embedding is fed into a denoising diffusion probabilistic model
(DDPM) [Ho et al. 2020] to generate an image.

The training process of this two-step framework resembles that of
standard text-conditioned diffusion models. First, a DDPM is trained
following the standard diffusion objective and aims to minimize:

L = E𝑧,𝑦,𝜀,𝑡
[
| |𝜀 − 𝜀𝜃 (𝑧𝑡 , 𝑡, 𝑐) | |22

]
. (1)

Here, the denoising network 𝜀𝜃 is tasked with removing the noise
𝜀 added to the latent code 𝑧𝑡 at timestep 𝑡 , given the conditioning
vector 𝑐 , where 𝑐 is now an image embedding.

Next, the Diffusion Priormodel, 𝑃𝜃 , is trained to predict a denoised
image embedding 𝑒 from a noised image embedding 𝑒𝑡 at timestep
𝑡 , given a text prompt 𝑦, by minimizing the objective given by:

L𝑝𝑟𝑖𝑜𝑟 = E𝑒,𝑦,𝑡
[
| |𝑒 − 𝑃𝜃 (𝑒𝑡 , 𝑡, 𝑦) | |22

]
. (2)

In this work, we explore how the Diffusion Prior can be adapted
to operate over image embeddings rather than the standard text
embeddings. In doing so, we present a versatile framework capa-
ble of mapping various user inputs to their corresponding image
embeddings.
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Fig. 4. pOps Overview for the Texturing Operator. Given an image representing our source object and an image representing our target texture, we first
encode both images into the CLIP embedding space, resulting in embeddings 𝑒𝑜𝑏 𝑗𝑒𝑐𝑡 and 𝑒𝑡𝑒𝑥𝑡𝑢𝑟𝑒 , respectively. To train our Diffusion Prior model on the
specific semantic task (shown in yellow), we perform optimization as follows. At each timestep 𝑡 , we pass the two image embeddings, an encoding of 𝑡 , and a
noised image embedding to our Diffusion Prior model. The model is tasked with outputting a denoised image embedding that matches the target embedding
𝑒𝑡𝑎𝑟𝑔𝑒𝑡 . Following training, we can pair our trained Diffusion Prior model with a pretrained, fixed image diffusion model. The learned image embedding serves
as a conditioning to the diffusion model to effectively “render” the corresponding image (illustrated in blue).

4 THE POPS FRAMEWORK
Here, we demonstrate how pOps can be utilized to realize a variety
of semantic operators. While all the pOps operators share the same
architecture, they differ in terms of input conditions and correspond-
ing training objectives.

4.1 Binary Image Operators
We begin with binary operators that are conditioned on two pro-
vided image embeddings and produce a single image embedding that
aligns with the desired task. An overview is provided in Figure 4.

4.1.1 Architecture and Training. Following Ramesh et al. [2022], we
divide the generation process into two stages. First, an image em-
bedding is generated utilizing a dedicated transformer model. This
image embedding then serves as a condition for the image diffusion
model to generate the desired image. Since we work directly over
image embeddings, training is required only for the prior, while the
diffusion image model, acting as a “renderer”, remains fixed.
For our binary operators, the learnable task is defined using a

paired dataset of input conditions, (𝐼𝑎 , 𝐼𝑏 ), and a corresponding tar-
get image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 , see Figure 5. These pairs represent the semantic
mapping we aim to learn. As we operate in the image embedding
space, we first encode all images using a pretrained CLIP image
encoder [Radford et al. 2021], 𝐸𝑖𝑚 (·), resulting in corresponding
embeddings 𝑒𝑎 , 𝑒𝑏 , and 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 . We note that the original prior model
received 77 input tokens, representing the 77 text tokens extracted
from the pretrained CLIP text encoder. Here, we repurpose these
inputs, placing our two embeddings 𝑒𝑎 and 𝑒𝑏 at the start and filling
the remaining entries with zero embeddings. As shall be demon-
strated, reusing the original entries of the prior model allows us
to adapt the number of image embeddings that we pass to the dif-
fusion prior model to match each operator. These embeddings are
followed by an encoding of the timestep 𝑡 and the noised image
embedding we aim to denoise. The predicted output of the prior

𝐼𝑎 𝐼𝑏 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 𝐼𝑎 𝐼𝑏 𝐼𝑡𝑎𝑟𝑔𝑒𝑡

Fig. 5. Generated paired data for various pOps operators. During training,
the images are encoded to embeddings 𝑒𝑎 , 𝑒𝑏 . and 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 , respectively.

model is taken from the token output associated with the input
noised image embedding, yellow highlighted section of Figure 4.

During training, at each optimization step, we randomly sample
a timestep 𝑡 and add a corresponding noise to 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 , resulting in
the noisy image embedding 𝑒𝑡𝑡𝑎𝑟𝑔𝑒𝑡 . We then train our prior model
using the standard denoising objective:

L𝑝𝑟𝑖𝑜𝑟 = E𝑒𝑡𝑎𝑟𝑔𝑒𝑡 ,𝑦,𝑡

[
| |𝑒𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑃𝜃 (𝑒𝑡𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑡, 𝑒𝑎, 𝑒𝑏 ) | |22

]
. (3)

Thus, our model learns to denoise 𝑒𝑡𝑡𝑎𝑟𝑔𝑒𝑡 while taking into account
the conditional embeddings 𝑒𝑎 and 𝑒𝑏 . During inference, we perform
25 denoising steps, starting from random noise, with an additional
classifier-free guidance term where we drop the 𝑒𝑎 and 𝑒𝑏 inputs.

4.1.2 Data Generation. When trying to solve a specific image-to-
image task, it is common to incorporate task-specific modules into
the architecture, such as a dedicated depth estimation model ap-
plied to the input image or a background extraction model to isolate
the object of interest. Instead, in pOps, we adopt a unified archi-
tecture for all our binary operators. Our model implicitly learns to
manipulate the image embeddings based on the desired task. This
is achieved by generating data that simulates our target task, lever-
aging the powerful vision and vision-language models released in
recent years. Below, we outline the data generation process for the
various binary operators considered in this work, with additional
details and generated samples provided in Appendix A.
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Fig. 6. Data Generation Scheme. An example scheme for our data gener-
ation, illustrated over our texturing operator.

Texturing. In the texturing operator, our input image embed-
dings consist of 𝑒𝑜𝑏 𝑗𝑒𝑐𝑡 , the embedding of the object to be textured,
and 𝑒𝑡𝑒𝑥𝑡𝑢𝑟𝑒 , representing the desired texture. Our goal is to generate
a target embedding 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 , depicting an image of 𝑒𝑜𝑏 𝑗𝑒𝑐𝑡 textured
with 𝑒𝑡𝑒𝑥𝑡𝑢𝑟𝑒 . The data generation protocol used to create our paired
texturing dataset is illustrated in Figure 6.

We begin by generating an object using SDXL-Turbo [Sauer et al.
2024]. The resulting image embedding then serves as 𝑒𝑜𝑏 𝑗𝑒𝑐𝑡 used
during training. Next, we compile a set of attributes associated with
textures and randomly sample a subset of these properties, compos-
ing them into a descriptive sentence. We then generate an image
using a depth-conditioned Stable Diffusion model, conditioned on
the depth of the generated object image and the composed text
prompt. This process results in an image of our original object with
a new texture, which we utilize to generate the embedding 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 .
Finally, to generate 𝑒𝑡𝑒𝑥𝑡𝑢𝑟𝑒 , we automatically extract a small patch
from within the target image and define it as our texture exemplar.
It is important to highlight that the texture is directly extracted

from the target image. This encourages specificity, as a textual
prompt can generate a range of plausible textures, whereas here,
we condition the model on a specific texture. Furthermore, achiev-
ing a complete match between the target and object images is not
necessary. For instance, there can be variations in the background
between the two, as long as they remain semantically consistent.
Scene. In our scene operator, we receive two input embeddings:

𝑒𝑜𝑏 𝑗𝑒𝑐𝑡 , representing our object of interest, and 𝑒𝑏𝑎𝑐𝑘 , denoting a
target scene background for placing the object. As in texturing, we
initially generate an image of our object using SDXL-Turbo, which
corresponds to 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 . Next, we employ a background removal
model [BRIA 2024] to isolate our object from the generated image.
The segmented object is then positioned either on a white back-
ground or within a newly generated background, which is encoded
into the 𝑒𝑜𝑏 𝑗𝑒𝑐𝑡 embedding. Lastly, we utilize a Stable Diffusion
inpainting model to produce an image containing only the original
background, which we encode to 𝑒𝑏𝑎𝑐𝑘 . In essence, during the data
generation phase, we decompose the target into separate represen-
tations of its object and background. Through this process, pOps can
learn how to effectively compose the two elements back together.

Union. In our union operator, we receive two image embeddings
representing two objects, denoted as 𝑒𝑎 and 𝑒𝑏 , with the aim of
generating an image embedding that plausibly incorporates both
objects. To construct the union dataset, we build on the intuition
that separating objects from existing scenes is typically easier than
integrating them together. Therefore, we first construct a dataset
of images containing pairs of objects by randomly selecting two
object classes and generating an image containing both objects using
SDXL-Turbo (e.g., “a cat and a banana”). This resulting image is then
encoded to define 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 . Next, we employ a grounded detection
method, OWLv2 [Minderer et al. 2024], to extract each object of
interest as an individual crop, generating 𝑒𝑎 and 𝑒𝑏 , respectively. The
pOps operator is then tasked with composing these part embeddings
back into a single image combining both parts.

4.2 Multi-Image Compositions
While binary operators cover a wide range of tasks and can be com-
bined in a tree-like structure to execute more complex operations,
some operators can benefit from considering all inputs simultane-
ously. To illustrate this, we explore a specific composition operator
that takes a set of embeddings, each representing a distinct clothing
item, and combines them into a single representation of a person
wearing those clothes. To train such an operator, we extend the input
sequence to accommodate the set of clothing items, setting a fixed
input index for each clothing type. This again leverages the original
design of the prior, which was tailored to process a sequence of 77
input text tokens. For training, we utilize the ATR dataset [Liang
et al. 2015], developed for human parsing. We encode the given
complete image as our target embedding 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 and decompose
the clothing items using the segmentation masks annotated in the
dataset to form our input sequence. The training scheme itself is
identical to the binary operators, utilizing Equation (4) to train the
prior model on our composition task.

4.3 The Instruct Operator
All the operators discussed so far have assumed a paired dataset
with a well-defined target embedding. However, operating in the
CLIP embedding space presents interesting opportunities to easily
apply additional losses within this space. In particular, we explore a
binary operator that takes as input a CLIP image embedding of an
object, denoted as 𝑒𝑜𝑏 𝑗𝑒𝑐𝑡 , and a CLIP text embedding of a target
adjective, labeled as 𝑒𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (e.g., “spiky”, “hairy”, “melting”). With
these inputs, the prior model is tasked with generating an embed-
ding 𝑒𝑜𝑏 𝑗𝑒𝑐𝑡 corresponding to an image portraying the adjective
described in 𝑒𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 .

Since both the image embedding and text embedding reside in a
shared CLIP space of the same dimensionality, we can easily feed
both into our transformer. To train our task, we introduce an addi-
tional loss objective that evaluates the CLIP similarity between the
generated image and the embedding 𝑒𝑡𝑒𝑥𝑡 of the prompt combining
the target adjective and object class (e.g., “a spiky dog”). Formally,
our new loss objective is given by:

L = L𝑝𝑟𝑖𝑜𝑟 + 𝜆⟨𝑒𝑡𝑒𝑥𝑡 , 𝑃𝜃 (𝑒𝑡𝑐 , 𝑡, 𝑒𝑜𝑏 𝑗𝑒𝑐𝑡 , 𝑒𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 )⟩, (4)

where 𝑃𝜃 (𝑒𝑡𝑐 , 𝑡, 𝑒𝑜𝑏 𝑗𝑒𝑐𝑡 , 𝑒𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡 ) is the generated embedding.
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Fig. 7. Results obtained with our binary pOps operators. Notice that while images are visualized, all operations are applied within the embedding space.

Input “cracked” “burning” Input “enormous”

Input “rotten” “minimalistic” Input “translucent”

Input “spiky” “shiny” Input “futuristic”

Fig. 8. Instruct operator results obtained by pOps.

5 EXPERIMENTS
We now turn to validate the effectiveness of pOps through a com-
prehensive set of evaluations. Additional details, along with a large
gallery of results, are available in Appendices A, C and D.

Operator Results. Results for our binary operators are provided
in Figure 7, where each operator effectively realizes a specific and
consistent semantic operation. Given that we operate within the
CLIP embedding space, the operators focus on preserving the se-
mantic nature of the inputs while being agnostic to the structure or
placement of the objects. Next, we present results for our instruct
operator in Figure 8. Given a single descriptive word, our operator
successfully generates a plausible output incorporating both the
adjective and input object. As shown in Figure 9, our operators
can also be combined into generative equations representing more
complex semantic operations. These operations are applied directly
in the image embedding space, where only the final embedding is
“rendered” into a corresponding image. Finally, Figure 10 shows a

=“colorful”

=“illustration”

“”

=“fluffy”

Fig. 9. Multi-operator compositions obtained by our pOps method.

Inputs Result

Fig. 10. Multi-image compose operator results obtained by pOps.

multi-input example where pOps was trained to take a sequence
of embeddings corresponding to articles of clothing and output an
embedding that represents the complete outfit. Additional results
for all operators are available in Appendix D.
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Input Union Average Input Union Average

Input Scene Average Input Scene Average

Fig. 11. Qualitative comparison of pOps to latent averaging.

Object Texture VSP ZeST pOps

Fig. 12. Qualitative comparison for the pOps texturing operator.

Qualitative Comparisons. Next, we evaluate our union and
scene operators in comparison to latent space averaging. As can
be seen in Figure 11, pOps applies a consistent operation to the
provided inputs, whereas averaging yields outputs with varying
semantic meanings. This observation aligns with our expectations
that the CLIP embedding space is well-suited for semantic opera-
tions but is inconsistent when used naïvely. We proceed to evaluate
our texturing and instruct operators by comparing them to relevant
literature. In Figure 12, we compare our texturing operator to Visual
Style Prompting [Jeong et al. 2024] and ZeST [Cheng et al. 2024].
Similarly, in Figure 13, we compare our instruct operator to In-

structPix2Pix [Brooks et al. 2023] and IP-Adapter [Ye et al. 2023].
Note that pOps has seen the instructions during training, but without
direct supervision that was used in InstructPix2Pix. Comparisons
to additional baselines can be found in Appendix C.

Quantitative Comparisons. We conduct two forms of quan-
titative evaluation to validate the effectiveness of our approach.
In Table 1, we utilize image and text similarity metrics to compare
our instruct operator to InstructPix2Pix and IP-Adapter. One can
see that our method attains higher image similarity than IP-Adapter
with a scale of 0.1 while still retaining high text similarity values.
Next, we perform a user study for the instruct and texturing tasks
alongside their alternatives. The results in Table 2 demonstrate that
pOps compares favorably to the recent state-of-the-art in both tasks.

Analysis. As discussed, the image generation process in pOps is
independent of the trainable operator itself. Therefore, we have the
flexibility to employ any compatible image generation model that
can be conditioned on our CLIP image embeddings.While our model
of choice was Kandinsky 2 [Shakhmatov et al. 2022], in Figure 14 we
show that our method is also compatible with IP-Adapter without

In
pu

t

“melting” “shattered” “burning” “many” “muddy”

In
st
ru
ct
P2

P
IP
-A
da
pt
er

pO
ps

Fig. 13. Qualitative comparison for the instruct operator to existing ap-
proaches: InstructPix2Pix [Brooks et al. 2023] & IP-Adapter [Ye et al. 2023].

Table 1. Quantitative Comparison for the Instruct Operator. Image simi-
larity is computed with DreamSim [Fu et al. 2023] and text similarity with
CLIP ViT-L/14. Results are averaged across 52 objects and 65 adjectives.

Method Image Similarity ↑ Text Similarity ↑ BERT Similarity ↑

InstructPix2Pix 0.455 0.237 0.424
IP-Adapter (0.5) 0.826 0.211 0.544
IP-Adapter (0.1) 0.584 0.219 0.531

pOps 0.6607 0.236 0.437

Table 2. User study results for the instruct and texturing operators.

Instruct

Metric InstructP2P IP-Adapter IP-Adapter (0.1) pOps

Percent Preferred ↑ 23.81% 3.18% 12.70% 60.31%
Average Rating ↑ 1.65 1.95 2.75 3.49

Texturing

Metric IP-Adapter VSP ZeST pOps

Percent Preferred ↑ 3.57% 1.79% 37.50% 57.14%
Average Rating ↑ 1.45 2.21 3.66 3.98

requiring any modification or tuning. This compatibility enables
us to leverage a diverse range of models supported by IP-Adapter,
including a depth-conditioned ControlNet.
Finally, since pOps employs a diffusion model to generate im-

age embeddings, we can sample different seeds for the same input
conditions. Interestingly, in Figure 15, we demonstrate that when
providing only a single input to the texturing operator, the model
can sample diverse and plausible results based on the given input.
Additional examples for both analyses are provided in Appendix D.
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Object Texture Kandinsky IP-Adapter +Depth
Fig. 14. Different Renderers. pOps outputs can be directly fed to either
Kandinsky or IP-Adapter and incorporated alongside spatial conditions

Object Sampled Textures

Texture Sampled Objects
Fig. 15. Sampling from missing inputs. Given only an object or a texture,
the pOps texturing operator can successfully sample diverse textured objects.

6 LIMITATIONS
While our experiments highlight the potential of pOps for semantic
control, it is important to also discuss the limitations of our ap-
proach. First, there are inherent limitations when operating within
the CLIP domain. As previously discussed in Ramesh et al. [2022],
the semantic embedding fails to preserve some visual attributes.
In Figure 16 we visualize these limitations by viewing direct re-
constructions of images when passing them through the CLIP em-
bedding space. Although the embedding space effectively encodes
the objects semantically, it struggles with encoding their distinct
visual appearance compared to optimization-based personalization
methods. As shown, CLIP also struggles with binding two different
visual attributes to two distinct objects. This was most evident in
our results for the union operation where the “rendered” result may
leak colors between the two objects, struggling with maintaining
the distinct appearance of each one.

Reconstruction Results Operator Results

Input Reconstruct Input A Input B Union Result

Fig. 16. Limitations of pOps.On the leftwe show reconstructions achieved
by directly embedding an image into CLIP and reconstructing it with Kandin-
sky2, highlighting the limitations of the embedding space. On the right, we
show failure cases for our union operator, where attribute leakage is visible
or where the operator struggles with preserving both objects.

Additionally, pOps tunes each operator independently, where it
might be more beneficial to train a single diffusion model capable
of realizing all of our different operators together or alternatively
do only a low-rank adaptation [Hu et al. 2021] when training an
operator. Finally, all pOps operators were trained on a single GPU
for a few days. This leads us to believe that further computational
scaling could potentially improve performance even within the
limitations of the CLIP space and current architecture.

7 CONCLUSIONS
In this work, we have introduced pOps, a framework designed for
training semantic operations directly on CLIP image embeddings.
pOps offers a new take on image generation, providing users with
specific forms of semantic control over image embeddings that can
then be joined together to form the desired concept. Our method
builds upon both generated datasets that represent the task at hand
and can also be supervised directly using a CLIP-based objective.
We believe that pOps opens up new possibilities for training a wide
variety of operators within the CLIP space and other semantic spaces.
These new operators can then be composed with one another to
create even more creative possibilities along the generation process.
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Appendix

A ADDITIONAL DETAILS

A.1 Implementation Details
Models and Architectures. In this work, we use the CLIP ViT-

bigG-14-laion2B-39B-b160k model [Dosovitskiy et al. 2021; Radford
et al. 2021] for our embedding space, implemented using the Trans-
formers library [Wolf et al. 2020]. The architecture of our Diffusion
Prior model follows the same architecture as used in Kandinsky
2 [Shakhmatov et al. 2022]. For our diffusion models, we show re-
sults over both the Kandinsky 2.2 model [Shakhmatov et al. 2022]
and IP-Adapter [Ye et al. 2023], both of which support this specific
CLIP model.

Training Scheme. We train all models using a batch size of
1 over a single GPU. The models are trained using the AdamW
optimizer [Loshchilov andHutter 2019] with a constant learning rate
of 1𝑒−5. Each operator is trained for approximately 500, 000 training
steps when trained from scratch. However, we found, empirically,
that fine-tuning the model from an existing operator rather than
the original Diffusion Prior model speeds up convergence. Unless
otherwise noted, we train all the layers of the Diffusion Prior model.

A.2 Data Generation
In the main paper, we discuss the process used for generating data
for each operator. Below, we provide additional details. Samples of
the generated data are illustrated in Figure 17. Unless otherwise
noted, for each operator, we generate approximately 50, 000 samples.

Texturing. The data generation scheme for our texturing oper-
ator is illustrated in Figure 5 of the main paper. We consider 290
object candidates across various categories such as geometric ob-
jects, animals, statues, and other miscellaneous common objects.
We additionally consider 24 different object placement candidates
and 310 texture attributes. For generating the object images, we
use SDXL-Turbo [Sauer et al. 2024] and use prompts of the form “A
photo of a <object> <placement>.”.
To generate the target image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 , we then sample between

one and five texture attributes and generate an image using a depth-
conditioned Stable Diffusion 2.0 [Rombach et al. 2022] model using
prompts of the form “A photo of a <object> made from <texture 1,
texture 2, ...> <placement>.” The generation process is conditioned
on the depth map extracted from 𝐼𝑜𝑏 𝑗𝑒𝑐𝑡 .
Finally, we are left to extract the patch representing our input

texture image 𝐼𝑡𝑒𝑥𝑡𝑢𝑟𝑒 . To this end, we first detect the object in the
generated image using an OWLv2 [Minderer et al. 2023] model with
the prompt “A <object>”. We then select a small patch from within
the output bounding box and use this as our texture image.

Scene. For our scene operator, as noted in the main paper, 𝐼𝑜𝑏 𝑗𝑒𝑐𝑡
is created either by pasting the segmented object either on a white
background or a newly generated background. For the newly gen-
erated background, we compose a set of 208 possible backgrounds
such as “On the beach”, “On the farm”, “In the castle”, etc. For our
inpainting model, used to create 𝐼𝑏𝑎𝑐𝑘 , we employ the SD-XL In-
painting 0.1 model using the mask extracted from our object.

Texturing

Scene

Union

𝐼𝑎 𝐼𝑏 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 𝐼𝑎 𝐼𝑏 𝐼𝑡𝑎𝑟𝑔𝑒𝑡

Fig. 17. Generated paired data for various pOps operators. During training,
the images are encoded to embeddings 𝑒𝑎 , 𝑒𝑏 . and 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 , respectively.

Union. For generating our union dataset, we consider 20, 000
different objects, taken from the raw classes list from Open Im-
ages [Kuznetsova et al. 2020].

Instruct. Here, we sample our images from a set of 20, 000 possi-
ble classes, as above, and a list of 60 possible adjectives.

Composition. As noted in the main paper, for our composition
operator, we use the ATR dataset [Liang et al. 2015] for training.
In total, we use 17, 000 images for training, comprising 12 different
clothing categories.

B EVALUATION SETUP

B.1 Baseline Methods
Texturing. For evaluating our texturing operator, we consider

four alternative methods: (1) Cross-Image Attention [Alaluf et al.
2023a], (2) IP-Adapter [Ye et al. 2023], (3) Visual Style Prompt-
ing [Jeong et al. 2024], and (4) ZeST [Cheng et al. 2024].

For all methods, we use their official implementation and default
hyperparameters. For IP-Adapter [Ye et al. 2023], we consider IP-
Adapter trained over Stable Diffusion 1.5 [Rombach et al. 2022]
which uses OpenCLIP-ViT-H-14 for extracting the conditioning
image embeddings.
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Instruct. For the instruct operator, we consider three approaches:
(1) IP-Adapter [Ye et al. 2023], (2) InstructPix2Pix [Brooks et al. 2023],
and (3) NeTI [Alaluf et al. 2023b].
For IP-Adapter, we consider two variants. First, we use the IP-

Adapter Plus variant trained over Stable Diffusion 1.5 using a scale
of 0.5, where we pass the adjective as the guiding text prompt.
However, we attained better results when using the more recent
IP-Adapter for SDXL 1.0 which is conditioned on image embeddings
extracted from OpenCLIP-ViT-H-14 (ip-adapter-plus_sdxl_vit-h).
We found that to achieve meaningful semantic modifications, a
low scale factor of 0.1 was needed. However, when doing so, the
resulting images generated by IP-Adapter no longer resembled the
original images. As such, we captioned the original images using
BLIP-2 [Li et al. 2023a] and passed the image caption along with the
desired adjective to IP-Adapter as the guiding text prompt. We found
that this allowed for better alignment with the adjective (thanks to
the low scale) while better preserving the original image (thanks to
the image caption).
Finally, we compare pOps to NeTI, an optimization-based per-

sonalization method (see Figure 23). We follow the default hyper-
parameters and train a new concept using the image of the object.
The best results were achieved when training for 250 optimization
steps, as additional training led to overfitting the original image.
At inference, we generated images using prompts of the form “A
photo of a <adjective> 𝑆∗”. When needed, we manually modified
the prompts to ensure that they were grammatically correct.

B.2 Quantitative Evaluations
Below we provide details regarding the evaluation data and protocol
reported in the main paper.

Texturing. To quantitatively evaluate performance on the tex-
turing task, we consider 52 images of objects spanning various
categories including animals, statues, food items, accessories, and
more. For each object, we paint the object using 16 different texture
patches, resulting in 832 object-texture combinations. For each of
the considered methods, we utilized three different random seeds,
which gave 2, 496 total results.

As no standard metric exists for evaluating the quality of the
texturing, we perform a perceptual user study. We consider two
types of questions: (1) top preference and (2) rating.More specifically,
users were first shown the results of the four methods side-by-side
and asked to choose the result they most preferred while taking into
account both how the original object was preserved and how the
target texture was applied. Next, users were asked to rate the result
of each method on a scale of 1 to 5, with 5 being the best, on how
well the original object was preserved and the texture was applied
to it. Each user was shown 7 questions for each of the two types.

Instruct. To evaluate our instruct operator, we similarly con-
struct an evaluation set. Here, we consider the same 52 objects as
above and construct a set of 65 adjectives. We then modify each
of the 52 objects with each adjective, resulting in 3, 380 combina-
tions. As above, each method is applied using three different seeds,
resulting in 10, 140 generated images.

For our evaluation metric, we first consider the standard CLIP-
Score [Hessel et al. 2021] andmeasure CLIP-space similarities. Specif-
ically, we first compute the image similarity between the generated
images and the original image. Next, we calculate the CLIP-space
similarity between the embeddings of the generated images and
the embedding of text prompts of the form “A <adjective> photo”.
Finally, we consider an additional text-based similarity metric. Here,
we first manually create a short caption of the target object (e.g., “A
lion statue”, “A dress”). We then caption the generated images using
BLIP-2 [Li et al. 2023a]. We then compute a sentence similarity mea-
sure [Devlin et al. 2018; Reimers and Gurevych 2019], computing the
average cosine similarity between sentence embeddings extracted
from the generated caption and captions of the form “A photo of a
<adjective> <caption>.” This metric was designed to better capture
the ability of the methods to integrate the desired adjective while
preserving the original object class.

C ADDITIONAL COMPARISONS
We provide additional qualitative comparisons, as follows:
(1) First, in Figures 18 to 20, we provide additional comparisons

over our binary operators (union, scene, and texturing), com-
paring our pOps results with those obtained from a simple
latent averaging within the CLIP embedding space.

(2) In Figure 21, we provide additional qualitative comparisons
to alternative texturing approaches: Cross-ImageAttention [Alaluf
et al. 2023a], IP-Adapter [Ye et al. 2023], Visual Style Prompt-
ing [Jeong et al. 2024], and ZeST [Cheng et al. 2024].

(3) In Figure 22, we show additional qualitative comparisons
over our instruct operator, comparing pOps to two alterna-
tive approaches: InstructPix2Pix [Brooks et al. 2023] and
IP-Adapter [Ye et al. 2023].

(4) Finally, in Figure 23, we compare our instruct operator to
an additional optimization-based personalization approach,
NeTI [Alaluf et al. 2023b].

D ADDITIONAL RESULTS
Finally, in the below Figures, we provide additional results:
(1) In Figure 24 and Figure 25, we show additional results ob-

tained by our texturing Diffusion Prior model when using
null inputs for the object input and texture input, respec-
tively.

(2) In Figures 26 to 28, we provide additional texturing results.
(3) In Figure 29, we provide additional union results.
(4) In Figures 30 to 32, we show additional scene operator re-

sults.
(5) In Figure 33, we provide additional instruct operator results.
(6) In Figures 34 and 35, we show additional multi-image cloth-

ing composition results obtained with pOps.
(7) In Figure 36, we show results obtained with both Kandin-

sky [Shakhmatov et al. 2022] and IP-Adapter [Ye et al. 2023]
as renderers as well as results obtained with IP-Adapter
alongside ControlNet [Zhang andAgrawala 2023]with depth-
conditioning.

(8) Finally, in Figures 37 to 39, we provide examples of operator
compositions, combining our scene, instruct, and texturing
pOps operators.
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Object A Object B Average Ours Object A Object B Average Ours

Fig. 18. Qualitative comparison of our pOps union operator compared to results obtained by averaging over the CLIP image embdedings.

Object Scene Average Ours Object Scene Average Ours

Object Scene Average Ours Object Scene Average Ours

Object Scene Average Ours Object Scene Average Ours

Object Scene Average Ours Object Scene Average Ours

Object Scene Average Ours Object Scene Average Ours

Fig. 19. Qualitative comparison of our pOps scene operator compared to results obtained by averaging over the CLIP image embdedings.
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Object Texture Average Ours Object Texture Average Ours

Object Texture Average Ours Object Texture Average Ours

Object Texture Average Ours Object Texture Average Ours

Object Texture Average Ours Object Texture Average Ours

Object Texture Average Ours Object Texture Average Ours

Fig. 20. Qualitative comparison of our pOps texturing operator compared to results obtained by averaging over the CLIP image embdedings.
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Object Texture CIA IP-Adapter Style Prompting ZeST pOps
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Object Texture CIA IP-Adapter Style Prompting ZeST pOps

Object Texture CIA IP-Adapter Style Prompting ZeST pOps

Object Texture CIA IP-Adapter Style Prompting ZeST pOps

Object Texture CIA IP-Adapter Style Prompting ZeST pOps

Object Texture CIA IP-Adapter Style Prompting ZeST pOps

Object Texture CIA IP-Adapter Style Prompting ZeST pOps

Fig. 21. Additional qualitative comparison for the pOps texturing operator to alternative texturing approaches: Cross-Image Attention [Alaluf et al. 2023a],
IP-Adapter [Ye et al. 2023], Visual Style Prompting [Jeong et al. 2024], and ZeST [Cheng et al. 2024].
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Fig. 22. Additional qualitative comparison for the pOps instruct operator to alternative instruction-based editing approaches: InstructPix2Pix [Brooks et al.
2023] and two variants of IP-Adapter [Ye et al. 2023].
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Fig. 23. Qualitative comparison for the pOps instruct operator compared to NeTI [Alaluf et al. 2023b], an optimization-based personalization technique.
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Object Generated objects using null input

Fig. 24. Results obtained by our texturing model when null inputs are passed in place of the object input.
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Object Generated textures using null input

Fig. 25. Results obtained by our texturing model when null inputs are passed in place of the texture input.
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Object Texture Result Object Texture Result

Object Texture Result Object Texture Result

Object Texture Result Object Texture Result

Object Texture Result Object Texture Result

Object Texture Result Object Texture Result

Object Texture Result Object Texture Result

Fig. 26. Additional texturing results obtained by our pOps method.
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Fig. 27. Additional texturing results obtained by our pOps method.
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Object Results
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Object Results

Object Results
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Object Results
Fig. 28. Additional texturing operator results obtained by our pOps method.
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Input A Input B Result Input A Input B Result

Input A Input B Result Input A Input B Result

Input A Input B Result Input A Input B Result

Input A Input B Result Input A Input B Result

Fig. 29. Additional union results obtained by our pOps method.
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Object Background Output Object Background Output

Object Background Output Object Background Output

Object Background Output Object Background Output

Object Background Output Object Background Output

Object Background Output Object Background Output

Object Background Output Object Background Output

Fig. 30. Additional scene operator results obtained by our pOps method.
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Object Background Output Object Background Output

Object Background Output Object Background Output

Object Background Output Object Background Output
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Object Background Output Object Background Output

Object Background Output Object Background Output

Fig. 31. Additional scene operator results obtained by our pOps method.
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Object Background Output Object Background Output

Object Background Output Object Background Output

Object Background Output Object Background Output

Object Background Output Object Background Output

Fig. 32. Additional scene operator results obtained by our pOps method.
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Input “soggy” Input “rotten” Input “colorful’

Input “small” Input “melting” Input “sliced’

Input “enormous” Input “muddy” Input “sketch’

Input “aged” “futuristic” Input “fluffy” “litograph”

Input “glowing” “melting” Input “glowing” “gothic”

Input “group” “drawing” Input “tiny” “woodcut”

Fig. 33. Additional instruct operator results obtained by our pOps method.
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Input 1 Input 2 Result

Input 1 Input 2 Input 3 Result

Input 1 Input 2 Input 3 Result

Input 1 Input 2 Input 3 Input 4 Result

Input 1 Input 2 Result

Input 1 Input 2 Result

Fig. 34. Additional multi-image clothing composition results obtained by our pOps method.
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Input 1 Input 2 Input 3 Result

Input 1 Input 2 Result

Input 1 Input 2 Input 3 Result

Input 1 Input 2 Input 3 Result

Input 1 Input 2 Result

Input 1 Input 2 Input 3 Result

Fig. 35. Additional multi-image composition results obtained by our pOps method.
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Object Texture Kandinsky IP-Adapter IP-Adapter+Depth

Fig. 36. Different Renderers. pOps outputs can be directly fed to either Kandinsky or IP-Adapter and incorporated alongside spatial conditions using
ControlNet [Zhang and Agrawala 2023].
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⃝⃝⃝ “plush” ⃝⃝⃝ ===

⃝⃝⃝ “winged” ⃝⃝⃝ ===

⃝⃝⃝ “colorful” ⃝⃝⃝ ===

⃝⃝⃝ “plush” ⃝⃝⃝ ===

⃝⃝⃝ “colorful” ⃝⃝⃝ ===

⃝⃝⃝ “plush” ⃝⃝⃝ ===

⃝⃝⃝ “burning” ⃝⃝⃝ ===

Input Instruction Scene Output

Fig. 37. Compositions of instruct and scene operators obtained by our pOps method.
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⃝⃝⃝ “hairless” ⃝⃝⃝ ===

⃝⃝⃝ “cartoon” ⃝⃝⃝ ===

⃝⃝⃝ “fluffy” ⃝⃝⃝ ===

⃝⃝⃝ “melting” ⃝⃝⃝ ===

⃝⃝⃝ “transparent” ⃝⃝⃝ ===

⃝⃝⃝ “futuristic” ⃝⃝⃝ ===

⃝⃝⃝ “origami” ⃝⃝⃝ ===

⃝⃝⃝ “translucent” ⃝⃝⃝ ===

⃝⃝⃝ “futuristic” ⃝⃝⃝ ===

⃝⃝⃝ “winged” ⃝⃝⃝ ===

Input Instruction Texture Output

Fig. 38. Compositions of instruct and texturing operators obtained by our pOps method.
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⃝⃝⃝ ⃝⃝⃝ “drawing” ===

⃝⃝⃝ ⃝⃝⃝ “abstract art” ===

⃝⃝⃝ ⃝⃝⃝ “acrylic painting” ===

⃝⃝⃝ ⃝⃝⃝ “animation” ===

⃝⃝⃝ ⃝⃝⃝ “two” ===

⃝⃝⃝ ⃝⃝⃝ “melting” ===

⃝⃝⃝ ⃝⃝⃝ “illustration” ===

⃝⃝⃝ ⃝⃝⃝ “enormous” ===

⃝⃝⃝ ⃝⃝⃝ “colorful” ===

⃝⃝⃝ ⃝⃝⃝ “enormous” ===

⃝⃝⃝ ⃝⃝⃝ “abstract art” ===

⃝⃝⃝ ⃝⃝⃝ “glowing” ===

Input Texture Instruction Output

Fig. 39. Compositions of texturing and instruct operators obtained by our pOps method.
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